
J
H
E
P
1
1
(
2
0
0
7
)
0
1
6

Published by Institute of Physics Publishing for SISSA

Received: September 16, 2007

Accepted: October 11, 2007

Published: November 8, 2007

Strong-coupling expansion of cusp anomaly from

quantum superstring

Radu Roiban

Department of Physics, The Pennsylvania State University,

University Park, PA 16802, U.S.A.

E-mail: radu@phys.psu.edu

Arkady A. Tseytlin∗

Blackett Laboratory, Imperial College,

London SW7 2AZ, U.K.

E-mail: tseytlin@imperial.ac.uk

Abstract: We consider the world surface in AdS5 that ends on two intersecting null lines

at the boundary. The corresponding superstring partition function describes the expecta-

tion value of the Wilson line with a null cusp in dual large N maximally supersymmetric

gauge theory and thus determines the cusp anomaly function f(λ) of the gauge coupling λ

or the string tension
√

λ
2π

. The first two coefficients in its strong-coupling or string inverse

tension expansion were determined in hep-th/0210115 (a0 = 1) and in arXiv:0707.4254

(a1 = −3 ln 2). Here we find that the 2-loop coefficient is a2 = −K where K is the Catalan’s

constant. This is in agreement (expected on the general grounds) with the previous results

for f(λ) as the coefficient of ln S term in the energy of the closed spinning string in AdS5.

The string theory value for a2 is in agreement with the numerical result in hep-th/0611135

and the recent analytic result in arXiv:0708.3933 for the coefficients in strong-coupling

Ssolution of the BES equation. We explicitly verify the cancellation of all 2-loop logarith-

mic divergences thus demonstrating the quantum consistency of the AdS5×S5 superstring

action at this order. We also discuss the structure of the three and higher string loop

corrections to the cusp anomaly function giving a 2d QFT diagrammatic interpretation to

the result of arXiv:0708.3933 for the solution of the BES equation following from the Bethe

ansatz prescription for the spectrum of the theory.
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1. Introduction

Anomalous dimension of minimal twist large spin single trace operator or anomalous di-

mension of a Wilson line with a null cusp [1] was a subject of much attention in the context

of the AdS/CFT duality for several years starting with the seminal work of [2] (see also [3 –

5]). In the planar limit this dimension is a function f(λ) of the ‘t Hooft coupling λ or of

the AdS5 × S5 string tension
√

λ
2π

. Finding this function exactly would be an important

progress. A series of recent developments based on the apparent integrability of the theory

culminated in a suggestion [6] of an integral equation that, in principle, determines f(λ)

for any value of λ.

To check the consistency of this equation and thus of the underlying asymptotic Bethe

ansatz it is important compare its prediction with that of the quantum superstring theory

in AdS5 × S5 . The perturbative string theory or the strong-coupling expansion of f(λ)

can be written as

f(λ) =

√
λ

π

[

a0 +
a1√
λ

+
a2

(
√

λ)2
+

a3

(
√

λ)3
+ . . .

]

, (1.1)

where the tree-level [2] and the 1-loop [3] superstring predictions are

a0 = 1 , a1 = −3 ln 2 . (1.2)

The computation of the 2-loop superstring coefficient was initiated in [7]1 where it was

found to be expressed in terms of the Catalan’s constant K =
∑∞

n=0
(−1)n

(2n+1)2
≈ 0.9159.

1Note that in the notation of [7] ak = 1
π
ak.
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The expansion of the BES [6] equation at strong coupling turned out to be a non-trivial

problem [8 – 12].2 The results for the three leading an coefficients (1.2) were first found

only numerically [8] (a0 was later computed exactly [10]).3 The numerical result for the

third coefficient found in [8] was a3 ≈ −0.9158 ± 0.0039.4

Very recently the analytic results for the coefficients in the strong coupling expansion

of the solution of the BES equation for the cusp anomaly function (1.1) was found in a

remarkable paper of [18], with the first few leading coefficients given by5

a2 = −K , (1.3)

a3 = − 1

32

[

27ζ(3) + 96K ln 2
]

, (1.4)

a4 = − 1

16

[

84β(4) + 81ζ(3) ln 2 + 32K2 + 144K(ln 2)2
]

, (1.5)

a5 = − 9

2048

[

4785ζ(5) + 10572β(4) ln 2 + 4416ζ(3)K + 5184ζ(3)(ln 2)2 + 4096K2 ln 2
]

(1.6)

where

ζ(k) =
∞

∑

n=1

1

nk
, β(k) =

∞
∑

n=0

(−1)n

(2n + 1)k
, β(2) = K . (1.7)

The expression for a2 (1.3) thus agrees with the numerical value found in [8] and matches

precisely (the corrected version of) the result of the 2-loop superstring computation in [7].

Our aim here is to confirm the Catalan constant value of a2 in (1.3) by an independent

2-loop superstring computation. The agreement of the results for a2 obtained in [8] and [18]

from the BES equation with our superstring expression provides an important test of the

BES equation and thus of the underlying asymptotic Bethe ansatz. The significance of

the result of the present paper is that it provides a highly non-trivial confirmation of the

proposal for the all-order strong-coupling phase [17] and its weak-coupling continuation

in [6]. Indeed, while the expressions for the tree-level [19] and the 1-loop [20, 21] terms

in the strong-coupling expansion for the phase where essentially put into the Bethe ansatz

expression from the known string theory results, the higher order terms in the phase where

conjectured in [17] using the crossing symmetry condition [22] (which so far was not directly

derived from string theory). The present computation demonstrates that the 2-loop term

in the phase suggested in [17] is indeed in agreement with string theory.

The computation described below also resolves a technical problem related to UV

regularization present in the original approach of [7]. The manifest cancellation of the log-

arithmic UV divergences that we find here provides a direct demonstration of the quantum

2See also [13] for a potentially important alternative approach based on Baxter equation. A strong-

coupling interpolation of the sum of few leading perturbative gauge-theory coefficients which appears to be

in good agreement with the string results (1.2) was discussed in [14, 15, 9].
3a1 was also computed [16] from the “string” version of the Bethe ansatz, i.e. with the magnon scattering

phase taken in the strong-coupling expanded form [17].
4The proximity of the absolute value of this number to the value of the Catalan’s constant was noticed

by the authors of [7] but the final result for the coefficient a3 in the original version of [7] was incorrect due

to several errors which were finally corrected in the revised version ([7],v4).
5The relation of the notation used in [18] to ours is: Γcusp(g) = 1

2
f(λ), ck = − 1

(4π)k
ak, g =

√
λ

4π
. We do

not shift the argument of cusp anomaly function Γcusp(g) by c1 as was done in [18].
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Figure 1: Two-loop diagrams (bosonic propagators are denoted by solid lines and fermionic ones

are denoted by dashed lines).

consistency of the AdS5 × S5 Green-Schwarz (GS) action of [23]. This (together with the

earlier 1-loop results [3, 24]) removes any doubt that this action can be used as a basis for

non-trivial strong-coupling computations in the AdS/CFT.

Another new result is the suggestion of a 2d Feynmann diagram (i.e. quantum super-

string) interpretation to the higher-order coefficients (1.4)–(1.6), etc. found in [18]. In our

computation f(λ) appears in the quantum 2d effective action of the AdS5 ×S5 superstring

sigma model expanded near a particular “homogeneous” string background in AdS5

Γ = − ln Z =
1

2
f(λ)V2 . (1.8)

Γ is proportional to the (large) volume factor V2.
6 This 2d QFT interpretation of f(λ)

implies that different parts of the transcendental coefficients aL appearing in (1.1), (1.3)–

(1.6) can be associated with the contributions of different L-loop Feynmann diagrams in

the superstring sigma model.

In the 2-loop case both the bosonic and the fermionic “sunset” diagrams (figures 1a

and 1c) happen to contribute terms proportional to K (see [7] and below). Extending our

superstring computation to the 3-loop order appears to be relatively straightforward. A

qualitative analysis shows that ζ(3) term in a3 in (1.4) should originate from diagrams

in figures 2b, 2e, 2g and 2h, while the K ln 2 term should come from diagrams in figures

2c and 2f. In general, it is natural to conjecture that the “maximally irreducible” terms

ζ(2m+1) in the coefficients a2m+1 and β(2m) in the coefficients a2m [18] should originate,

respectively, from the “maximally irreducible” odd-loop L = 2m+1 and even-loop L = 2m

superstring Feynman diagrams.7

This string world-sheet, i.e. 2d QFT interpretation of the function f(λ) may help to

clarify the meaning of the Borel non-summability of the strong-coupling expansion for

f(λ) as found from the BES equation in [18]. As was observed in [18], all coefficients ak

in (1.1) except the first one are negative and their values grow factorially (cf. (1.4)–(1.6)).

It appears that in contrast to sign-alternating Borel-summable series usually found in QM

or QFT problems with perturbatively stable vacuum here we are dealing with an expansion

6For a homogeneous backgrounds such as those considered in [7] and here there is no distinction between

the 1-PI effective action and the logarithm of the partition function Z: connected but not 1-PI irreducible

2d Feynman graphs vanish.
7This should apply starting with 2-loop order. Using this logic at the 1-loop order one would get

a1 ∼ ζ(1) but this is logarithmically divergent; in fact, the 1-loop divergences cancel between bosons and

fermions and the finite remainder happens to be proportional to ln 2 [3, 25]. The 1-loop tadpoles adjoined

to lower-loop topologies should perhaps be interpreted in this way.
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Figure 2: Topologies bosonic three-loop diagrams (diagrams with fermionic lines have similar

topology).

near an unstable point. This is puzzling since the rotating folded string solution or the null

cusp solution of [4] we consider below (which are closely related [25, 26]) are perturbatively

stable.8 One may contemplate the presence of some non-perturbative instability. We shall

further comment on this in the concluding section 4.

We shall start in section 2 with setting up the computation of the the cusp anomaly

function using the open-string (Wilson line [27, 28]) approach which is based on expansion

near a Wilson line surface with a null cusp [4, 25]. As was explained in [25, 29, 26] it is

equivalent to the closed-string approach used in [2, 3, 30, 7]. We shall use the AdS5 × S5

GS superstring action in a special κ-symmetry gauge which becomes quadratic in fermions

[31] after the T-duality along the 4 AdS5 boundary directions in the Poincare coordinates.9

This action was already used in [25] for the computation of the 1-loop coefficient a1 in (1.2).

Here we shall utilize its simple structure (in particular, the absence of the quartic fermionic

terms) to perform the computation of the 2-loop coefficient a2.

In section 3 we shall turn to computation of quantum corrections to string partition

function expanded near the “null cusp” string background. We shall discuss the issue of

UV regularization, pointing out that the structure of the superstring action involving the

ǫab tensor in the fermionic term prohibits the use of a direct version of the 2d dimensional

regularization. Its use is not actually necessary since we find that all the logarithmic 2-loop

8In the conformal gauge we will be using here there is formally a ghost fluctuation mode corresponding

to the time direction in AdS5 but like in the flat Minkowski space case or in the AdS3 WZW model the

underlying string theory should be unitary: the Virasoro condition selects only physical on-shell modes.

In our conformal-gauge partition function computation we are expanding near a consistent on-shell string

background so the unphysical modes (a massless time-like (ghost) fluctuation mode and another massless

longitudinal mode) should decouple and they actually do (their trivial 1-loop contribution cancels against

that of the conformal gauge ghosts).
9This action was found in [31] by starting with the action of [23] written in a special κ-symmetry gauge

discussed in [32]. An equivalent action which also becomes quadratic in fermions after the T-duality was

found in a similar κ-symmetry gauge (“S-gauge”) in appendix C of [33].

– 4 –
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divergences cancel out separately in the sums of the bosonic and fermionic graphs computed

directly in d = 2. The remaining power divergences can then be eliminated using a kind of

analytic regularization which essentially amounts to setting δ(2)(0) = 0.10 This should be

considered as a regularization prescription that defines the quantum AdS5×S5 superstring

theory in a way consistent with its classical symmetries, i.e. as a conformal quantum 2d

field theory.

As summarised in section 3.2, the resulting finite contributions to the 2-loop coefficient

in (1.1) coming from the bosonic and from the fermionic 2-loop graphs in figure 1 happen

to be the same as found in the closed-string picture computation in [7]

a2 = a2B + a2F = K − 2K = −K , (1.9)

so that the total result matches the value in (1.3). Higher-loop generalizations are discussed

in section 3.3.

Section 4 contains some remarks on the problem with summability of the series in (1.1)

and also on a possible generalization of the present 2-loop computation to the case of non-

zero angular momentum J in S5.

Some technical details related to the structure of the fluctuation Lagrangian from

section 3 are given in appendix.

2. Superstring action, classical string background and fluctuations

Our starting point will be the path integral with the euclidean version of the κ-symmetry

gauge fixed and T-dualized AdS5 × S5 action found in [31]. This action is remarkably

simple being quadratic in fermions (m = 0, 1, 2, 3; s = 4, . . . , 9, z2 = zszs, a, b = 0, 1)11

SE =

√
λ

4π

∫

d2σ

[

1

z2
(∂axm∂axm + ∂azs∂az

s) + 4ǫabθ̄(∂ax
mΓm + ∂az

sΓs)∂bθ

]

. (2.1)

Here θ is a Majorana-Weyl 10d spinor and ΓA are standard “flat” 10d Dirac matrices. For

our present purpose the use of this T-dual action is a technical trick that allows us to

reduce the number of fermionic 2-loop diagrams we should compute.12

10In principle, one should be able to show the cancellation of all power-like divergent terms directly, by

carefully including the contributions of all local factors (measure, κ-symmetry ghosts, Jacobians due to

change of fluctuation bases, etc.). Bosonic power-like divergences are indeed cancelled by the invariant

measure contribution [7]. The same should apply to the fermionic sector: as was discussed in appendices C

and D.1 in [7], the cancellation of the 2-loop power-like divergences is required in order for the superstring

partition function to be equal to 1 in supersymmetric cases such as the flat space GS action expanded near

a long fundamental string background and the AdS5 × S5 GS action expanded near a BMN geodesic.
11We shall mostly follow the notation of [25]. We choose the conformal gauge and ignore the dilaton

coupling originating from the 2d duality transformation. We also use Euclidean signature on the world

sheet, i.e. σa = (σ0, σ1) (σ0 = −iτ ) as appropriate for the null cusp solution of [4]; thus there is no i in

front of the fermionic term.
12This T-duality is a quantum symmetry when both world sheet directions are non-compact (as is the

case in our present discussion). The T-duality maps the bosonic AdS5 × S5 part of the action into an

equivalent AdS5 × S5 bosonic sigma model (z → z−1 is a symmetry transformation). Thus the bosonic

– 5 –
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It will be useful to split the 6 coordinates zs ≡ zẑs, ẑ2 = 1 orthogonal to the directions

xm along the boundary of AdS5 as (s′ = 4, . . . , 8)

zs′ ≡ zẑs′ = z
ys′

1 + 1
4y2

, z9 ≡ zẑ9 = z
1 − 1

4y2

1 + 1
4y2

,
dzsdzs

z2
=

dz2

z2
+

dys′dys′

(

1 + 1
4y2

)2 (2.2)

where ys′ parametrize S5.

2.1 “Null cusp” solution

The conformal-gauge form of the solution for the open string world sheet ending on two

light-like lines forming a cusp at the boundary is [4, 25]

z̄ =
√

2 e−ασ0−βσ1 , (2.3)

x̄0 = e−ασ0−βσ1 cosh(βσ0 − ασ1) , x̄1 = e−ασ0−βσ1 sinh(βσ0 − ασ1) , (2.4)

α2 + β2 = 2 , (2.5)

where all other coordinates vanish (x̄2 = x̄3 = ȳs′ = 0) and the last equation (2.5) follows

from the conformal gauge condition. The original solution of [4] corresponds to α =√
2, β = 0.

The boundary z = 0 is reached in the limit σa → ∞ (assuming that σa run in the

infinite range and α, β ≥ 0). The induced metric is ds2
2 = dσ2

0 + dσ2
1 so that the value of

the classical action is simply

S̄E =

√
λ

2π
V2 , V2 =

∫

d2σ . (2.6)

For cusp anomaly interpretation it requires a regularization as discussed in [4, 29, 25]. This

issue will not be important for us here as quantum corrections to (2.6) will also scale as V2

and we will be interested in the value of the overall coefficient f(λ) in (1.8).

The free parameters α, β included for generality, reflect the possibility of making

SO(2) rotations of the world-sheet coordinates σa which leave invariant the sigma model

conformal-gauge equations of motion and constraints.

Under the 2d duality (T-duality) transformation z−2∂ax
m → ǫab∂

bx̃m the solu-

tion (2.3)–(2.5) is essentially mapped into itself: the duality is equivalent to interchanging

σ0 → σ1, σ1 → −σ0 and inverting z which can be implemented by changing the signs of

α, β and shiftinh σa by constants. This is the reason why, instead of starting with the

original AdS5 × S5 action (containing quartic fermionic terms) and expanding the string

path integral (giving the expectation value of the corresponding Wilson loop on the gauge

theory side [27, 28]) near the null cusp solution [4] in order to extract from it the cusp

anomaly coefficient f(λ), we may formally start with the T-dual action (2.1) and expand

AdS5 × S5 action has two different GS superstring extensions with different fermionic parts: the familiar

one [23] corresponding to the near-core D3-brane background where AdS5 × S5 space is supported by the

RR 5-form flux and the T-dual one corresponding [31, 25] to the near-core smeared D-instanton background

where the AdS5 × S5 space is supported by the RR scalar and dilaton. For other potential applications of

this T-dual action see [29, 25].

– 6 –
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it near the equivalent null cusp solution in (2.3)–(2.5). As was already checked in [25],

this procedure leads indeed to the same 1-loop coefficient a1 in (1.2) as found in the closed

string approach (i.e. in the energy of the closed spinning string).

To expose the fact that the SO(2) 2d Euclidean rotational invariance of the conformal-

gauge string sigma model13 is only spontaneously broken by the classical background, it is

useful to write the solution (2.3)–(2.5) in terms of the 2-vectors n1a, n2a (a = 0, 1)

n1 =
1√
2
(α, β) , n2 =

1√
2
(−β, α) , n1 · n1 = n2 · n2 = 1 , n1 · n2 = 0 , (2.7)

i.e. (n · σ ≡ naσa)

z̄ =
√

2 e−
√

2 n1·σ , x̄0 ± x̄1 = e−
√

2 (n1·σ± n2·σ) . (2.8)

In particular, in the simple case of β = 0 we have

α =
√

2 , β = 0 , n1 = (1, 0) , n2 = (0, 1) . (2.9)

Below we will express the string Lagrangian for fluctuations near the null cusp solution

in terms of the constant vectors na. This will help to make the structure of the quantum

contributions more transparent.

2.2 Fluctuation lagrangian

To find the string fluctuation Lagrangian near the background (2.8) it is useful to utilize

the observation of [25] that written in global AdS5 coordinates it can be related (by an

SO(2, 4) isometry and an analytic continuation) to the scaling limit [3, 30] of the spinning

closed string solution of [2]. The latter background is effectively homogeneous,14 i.e. the

corresponding fluctuation Lagrangian should have constant coefficients after an appropriate

choice of basis of the fluctuation fields.15

13In general, the Euclidean classical string sigma model equations and conformal gauge constraints are

covariant under the residual holomorphic conformal transformations of σ1 + iσ0 and σ1 − iσ0.
14One can make this explicit by an analytic continuation to an S5 solution [30, 7] or directly by a special

choice of coordinates in AdS5 as discussed in [25, 26].
15To make the homogeneous nature of the solution (2.8) explicit it is useful to choose a different set of

coordinates in the Poincare patch of AdS5: ds2 = dr2 + e−2rdxmdxm = dr2 + (dhm + hmdr)(dhm + hmdr)

where z = er and hm = xm

z
= e−rxm (m = 0, 1, 2, 3 and the metric has signature (−,+, +, +)). Next, we set

h± = h0±h1 = ve±w. Then the AdS5 metric above takes the form ds2 = dr2− (dv+vdr)2+v2dw2 +(dhi +

hidr)(dhi + hidr), so that the shifts of r, w are linear isometries (i = 2, 3). Let us assume that the world-

sheet signature is euclidean and consider the corresponding string action in conformal gauge. Then simplest

solution to look for is a homogeneous one where only the two isometric coordinates are non-zero and linear:

v = v0 = const, r = kaσa, w = maσa, hi = 0 (k and m are constant 2-vectors). Note that this ansatz

makes sense only for an infinite open string since r and w are non-compact coordinates. The equations

of motion are satisfied if k2 = m2 and the conformal gauge constraints give (assuming the induced metric

has standard flat form): (1 − v2
0)kakb + v2

0mamb = δab, i.e. k2 = m2 = 2, kama = 0, v2
0 = 1

2
. This gives

z = ek·σ, x± = verh± = 1√
2
e(k±m)·σ, i.e. brings us back to solution (2.8) after a trivial rescaling of z and

xm and renaming of the constant vectors. The fluctuation Lagrangian written in terms of r, v, w, hi has only

constant coefficients and at most quartic vertices. Let us mention a generalization of the above solution to

– 7 –
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In conformal gauge the AdS5 and S5 parts of the bosonic fluctuation Lagrangian are

decoupled and can be written as (see also [25])

L̃B =

√
λ

4π
LB , LB = LAdS5 + LS5 = L2 + L3 + L4 + . . . , (2.10)

L2,AdS5 = −(∂φ)2 +
1

2
(∂ϕ1)

2 +
1

2
(∂ϕ2)

2 + 4φ(n2 · ∂ϕ1 + n1 · ∂ϕ2)

+ (∂ξ)2 + (∂η)2 + 2ξ2 + 2η2 , (2.11)

L3,AdS5 = φ
[

(∂ϕ2)
2 − (∂ϕ1)

2
]

− 2(ξ2 + η2)(n2 · ∂ϕ1 − n1 · ∂ϕ2) , (2.12)

L4,AdS5 = −8

3
φ3(n1 · ∂ϕ2 + n2 · ∂ϕ1) + (ξ2 + η2)L2,AdS5 − 2ξη∂ξ∂η , (2.13)

L2,S5 = ∂ys′∂ys′ , L3,S5 = 0 , L4,S5 = −1

2
y2 ∂ys′∂ys′ . (2.14)

Here ∂ stands for ∂a and n · ∂ = na∂a, etc. The background dependence is represented by

the constant 2-vectors n1 and n2 in (2.7). The fields φ,ϕ1, ϕ2, ξ, η are fluctuations in the

five AdS5 directions,16 while ys′ are S5 coordinates from (2.2) that have zero background

values. The massless time-like (ghost) fluctuation φ should eventually decouple together

with another massless longitudinal mode (their trivial 1-loop contribution cancels against

the decoupled conformal gauge ghost contribution).

The explicit relation between φ,ϕ1, ϕ2, ξ, η and the fluctuations of the original Poincare

coordinates z, xm is given in appendix A. There we also present the resulting bosonic

propagator which is non-diagonal in the φ,ϕ1, ϕ2 directions.

Finding a convenient (constant coefficient) form for the quadratic fermionic term as

well as for the fermion-boson coupling terms following from the action (2.1) requires us to

perform a nontrivial rotation of fermions. This can be done in two steps. First, we note

that the world sheet position dependence in the terms involving the coordinates transverse

to the boundary directions arises entirely from the overall factor of z in zs = zẑs(y) (on

the solution (2.8) we have ȳs′ = 0, ¯̂z4,...,8 = 0, ¯̂z9 = 1). Redefining θ 7→ θ/
√

z̄ and making

use of the identity θ̄ΓAθ = 0 leads to the following expression for the fermionic term in the

square brackets in (2.1)

LF = 4 ǫab θ̄

[

∂ax
m

z̄
Γm +

(

∂az

z̄
ẑs +

z

z̄
∂aẑ

s

)

Γs

]

∂bθ . (2.15)

Since z̄ in (2.8) is exponential in σa the terms with ẑs in (2.15) will now have constant

coefficients once expanded near the solution. A second local redefinition of θ is needed in

order to take into account that x0 and x1 have nontrivial backgrounds in (2.8). In general,

the background value N̄ of

Nu
a ≡ ∂ax

u

z̄
, u = 0, 1; a = 0, 1 (2.16)

the case when there is also a “rotation” in S5 direction. The solution related to the scaling limit [30] of (S, J)

string [3] in the same way as described in [25] has also a non-trivial angle ϕ = ν′σ0 of S5 (ν′ = iν, J =
√

λν

in Minkowski signature) and v = v0 = 1√
2
, r = −κσ0 + µσ1 + 1

2
ln 2, w = κσ0 + µσ1, κ2 = µ2 − ν′2.

Equivalently, z =
√

2e−κσ0+µσ1 , x+ = e2µσ1 , x− = e−2κσ0 . The conformal factor of flat induced metric

is equal to 1 when µ = 1.
16The fields ξ, η are related to fluctuations of x2, x3 in (2.1) that are zero in the solution (2.8).
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is not an SO(1, 1) rotation matrix:

N̄u
a N̄v

b ηuv = n2an2b − n1an1b . (2.17)

It is nevertheless possible (though somewhat complicated) to find an SO(1, 1) rotation

of fermions that removes the position dependence from their action. For simplicity, it is

sufficient to consider the case of β = 0 in (2.9). Then we get

N̄u
a N̄v

b ηuv = ηab , (2.18)

and thus the required σa dependent rotation of θ is

θ 7→
[

cosh

(

1√
2

n2 · σ
)

+ sinh

(

1√
2

n2 · σ
)

Γ0Γ1

]

θ . (2.19)

Moreover, it turns out that the matrix

Nab = Nu
a N̄v

b ηuv (2.20)

expanded near the classical solution has only terms with constant coefficients in front of

the bosonic fluctuations (its expression to leading order in bosonic fluctuations is given in

appendix A).17

Taking into account the effect of the rotation (2.19) and making further use of the

identity θ̄ΓAθ = 0, we finally find for the fermionic part of the fluctuation Lagrangian

(a, b = 0, 1; i, j = 2, 3; s, t = 4, 5, . . . , 9):

LF = 4ǫab θ̄

[

−NacΓ
c +

∂ax
i

z̄
Γi +

(

∂az

z̄
ẑs +

z

z̄
∂aẑ

s

)

Γs

]

∂bθ

− 2
√

2 ǫab n2b θ̄

[

∂ax
i

z̄
Γi +

(

∂az

z̄
ẑs +

z

z̄
∂aẑ

s

)

Γs

]

Γ0Γ1θ . (2.21)

The second line appears due to the rotation (2.19). The bosonic fields here can be expanded

in fluctuations φ,ϕ1, ϕ2, ξ, η and ys′ (using the relations in appendix A) leading to fermion-

fermion-boson and fermion-fermion-boson-boson quantum vertices needed to compute the

2-loop diagrams in figure 1.

The quadratic term in (2.21) determining a non-degenerate fermionic propagator can

be written as

L2F = 2
√

2 ǫab θ̄
[

(−Γ0 +
√

2Γ9)n1a∂b − Γ1n2a∂b + n1an2bΓ
019

]

θ . (2.22)

The Γ019 term produces a non-zero mass (equal to 1) for the 8 independent fermionic

fluctuations (see also [25]).

3. Quantum corrections

Let us now turn to the computation of quantum loop corrections to the effective action as

defined by path integral based on the action given by the sum of the bosonic (2.10) and

the fermionic (2.21) parts.

17In the general case of β 6= 0 when N̄u
a N̄v

b ηuv is still a constant off-diagonal matrix the expansion of

Nu
a N̄v

b ηuv around the classical solution has again the constant coefficients.
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3.1 One-loop contribution

Let us start with reviewing the 1-loop result [3, 25]. From the quadratic part of the above

fluctuation Lagrangian it is straightforward to recover the mass spectrum and the 1-loop

value of the effective action (1.8) and thus the 1-loop coefficient in the cusp anomaly

function.

Extracting the bosonic kinetic operator from (2.10) and computing its determinant in

2d momentum representation (the propagator K−1
B (q) is given in appendix A) we find

detKB(q) = −28 (q2)7 (q2 + 2)2(q2 + 4) . (3.1)

This means that the bosonic spectrum contains seven massless scalars, two scalars with

mass
√

2 and one scalar with mass 2.

Performing a similar computation of the fermionic spectrum from the determinant of

the fermionic kinetic operator in (2.22) we get (n × q ≡ ǫabnaqb; see (2.9))

detKF (q) =
[

(n1 × n2)
2 + (n1 × q)2 + (n2 × q)2

]8
= 216(q2 + 1)8 , (3.2)

implying that the spectrum contains eight fermions with mass 1.

This coincides with the spectrum of fluctuations around the folded spinning string [3],

as was already discussed in [25]. Taking into account that the conformal-gauge ghost

contribution cancels the contribution of the two bosonic massless modes, the 1-loop effective

action is found to be given by the same expression as in [3, 30, 25]

Γ1 =
1

2
V2

∫

d2q

(2π)2

[

ln(q2 + 4) + 2 ln(q2 + 2) + 5 ln q2 − 8 ln(q2 + 1)

]

= −3 ln 2

2π
V2 . (3.3)

This leads (using (1.8)) to the value of a1 in (1.2).18

3.2 Two-loop contribution

The 1-loop result (3.3) is manifestly finite: the logarithmic UV divergences cancel be-

tween the bosonic and the fermionic terms. As was discussed in detail in [7], the issue of

potential higher-loop UV divergences in Green-Schwarz action expanded near a particu-

lar string background is subtle, due in particular to its lack of manifest power counting

renormalizability.19

To get rid of power divergences in [7] we attempted to use dimensional regularization

(as is common in the treatment of 2d sigma models). Continuing the AdS5 ×S5 GS action

to d = 2 − 2ǫ dimensions appears, however, to be inconsistent as this spoils its classical

κ symmetry.20 While the regularization procedure used in [7] made possible to find the

18Introducing a UV cutoff in the momentum integral in (3.3) one finds that the finite part proportional

to −3 ln 2 comes only from the bosonic mode contribution while the role of the fermion contribution is to

cancel the bosonic UV divergence.
19As for the 2d IR divergences, they cancel in on-shell effective action as expected on general grounds [7].
20Ideally, the regulator should be introduced before gauge fixing so that it preserves all local invariances

(and as many of the global invariances as possible). The presence of the Levi-Civita tensor (WZ) term in

the AdS5 × S5 GS action and the related 2d self-duality property of the κ-symmetry parameters makes

dimensional continuation problematic.
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non-trivial finite part of the 2-loop effective action and reproduce the value (1.3) of a2,
21

it did not allow us to check the expected cancellation of the logarithmic divergences.

Here we resolve this problem. A consistent computational procedure appears to be as

follows. One should first not use any explicit regularization and rearrange the momentum

integrals (directly in d = 2) to extract all potential logarithmically divergent contribu-

tions.22 Remarkably, by direct computation of the 2-loop graphs in figure 1 starting with

the action (2.1), (2.10), (2.21) we have found that the thus extracted ln Λ and ln Λ2 logarit-

mic divergences cancel separately in the sum of purely bosonic graphs (figure 1a, 1b) and

the sum of graphs with fermionic propagators (figure 1c, 1d). The remaining power diver-

gent terms can then be regularized away by a kind of analytic regularization prescription.

In fact, they should cancel against the invariant measure and κ-symmetry ghost contribu-

tions in a systematic treatment that takes into account all local δ(2)(0) contributions.

A variant of such regularization procedure is a version of “dimensional regularization”

that was found in [7] to preserve the BPS nature (Z = 1) of the expansion near the BMN

point-like string at 2-loops (see appendix C in [7]). It assumes that the use of all algebraic

manipulations with momentum integrals as well as of symmetric integration identities is

done strictly in two dimensions. The resulting 2d Lorentz covariant integrals are then

continued to d = 2 − 2ǫ as a way to get rid of power divergences. It turns out that the

simple poles in 1
ǫ

then cancel at the same time as the double poles, and that happens

separately for the bosonic and the fermionic contributions.

This prescription amounts to a consistent definition (respecting all relevant symmetries

of the classical action) of the AdS5 × S5 string theory as a 2d quantum conformal theory.

As we find below, the resulting 2-loop effective action is then finite and reproduces the

value in (1.3).

Before turning to the summary of our 2-loop results let us comment some more on

the cancellation of the logarithmic UV divergences. As was pointed out above, while at

the 1-loop order the logarithmic UV divergences were cancelling between the bosonic and

the fermionic contributions the 2-loop cancellation pattern is different: the logarithmic UV

divergences cancel separately in the bosonic and fermionic graph contributions. This may

seem surprising being in an apparent contradiction with the well-known expression for the

2-loop β-function for a generic bosonic sigma model (found in dimensional regularization

with minimal subtraction [34]), βµν = Rµν+ α′
2 RµλρσR λρσ

ν +. . .. The point, however, is that

the form of the 2-loop correction is renormalization scheme dependent (in a generic scheme

it contains other Rµν dependent terms, see, e.g., [35]) and for particular geometries (e.g.,

having zero Weyl tensor) one may achieve cancellation of the 2-loop correction in a special

21The value of a2 in the original version of [7] was incorrect: (i) the cancellation of the second tran-

scendental constant K̃ in the bosonic contribution was overlooked; (ii) the normalization of the fermionic

contribution was off by factor of 2; (iii) the computation was done for an S5 background related to the

relevant AdS5 rotating string background by an analytic continuation [37, 30] that also inverts the string

tension, so that the result of the 2-loop S5 computation should be taken at the end with an opposite sign.

These errors were corrected in the revised version (v4) of [7].
22The procedure of required rearranging of the momentum integrals by reducing the power of momenta

in the numerators was described in detail in [7].
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scheme.23 Moreover, for the homogeneous spaces like AdS5 and S5 there is no 1
ǫ2

∼ ln2 Λ

2-loop UV divergences (which are in general proportional to covariant derivatives of Rµν).

In fact, starting formally with such a sigma model defined in d dimensions one finds [34,

7] that the potentially divergent contribution is proportional to d − 2 = −2ǫ times the

square of the tadpole integral I[m] =
∫

ddq
(2π)d

1
q2+m2 (so that 1

ǫ2
pole cancels out). Then if

one uses a scheme in which one first combines the contributions of momentum integrals

directly in d = 2 then all logarithmic divergences cancel out. In this natural regularization

prescription the bosonic AdS5 × S5 sigma model defined directly in d = 2 is manifestly

2-loop finite.24 A non-trivial check of the quantum consistency of the AdS5 × S5 action is

that the same applies separately also to the fermionic graph contribution. This is indeed

what we have found by direct calculation starting with the action (2.1).

Given the mass spectrum of bosonic and fermionic fluctuations described above one

may anticipate which momentum integrals may in principle appear in the the 2-loop ef-

fective action given by the sum of graphs in figure 1. The values of masses are 0,
√

2, 2

(bosonic) and 1 (fermionic) but not all combinations of masses in the propagators actually

happen to appear in the final result. Let us define

I[m1,m2,m3] =

∫

d2q1d
2q2d

2q3

(2π)4
δ(2)(q1 + q2 + q3)

(q2
1 + m2

1)(q
2
2 + m2

2)(q
2
3 + m2

3)
, (3.4)

I[m1,m2] =

∫

d2q1d
2q2d

2q3

(2π)4
δ(2)(q1 + q2 + q3)

(q2
1 + m2

1)(q
2
2 + m2

2)
= I[m1]I[m2] , (3.5)

I[m] =

∫

d2q

(2π)2
1

q2 + m2
. (3.6)

The integral (3.4) is UV-finite while (3.5) exhibits ln2 Λ and ln Λ UV divergences. The

momentum integrals that appear in the direct computation of 2-loop graphs starting with

the action (2.10), (2.21) can be expressed in terms of the sum of integrals of the above type

plus the power divergent contributions proportional to the square of I0 =
∫

d2q
(2π)2

and to

I0I[m]; these we set to zero by an analytic (e.g. dimensional) regularization [40].

The explicit calculation has shown that only two special cases of the finite integral (3.4)

23For example, for a sphere sigma model there is only one coupling parameter (its radius) and thus the

2-loop β function coefficient can be made zero by a coupling redefinition. Equivalently, the general-scheme

expression for 2-loop term in βµν involves terms obtained from the 1-loop term by a coupling redefinition

G′
µν = Gµν + α′(b1Rµν + b2GµνR) + . . . and in the case when the Weyl tensor vanishes they can cancel the

RµλρσR λρσ
ν term. Note also that the standard lore that the first two coefficients in the beta-function are

scheme independent in 1-coupling theory does not apply to 2d sigma models, including the Sn one, since

here the scaling of the two-loop correction with the coupling is different than, say in gauge theory (which

in turn is related to the 2-derivative nature of the sigma model vertices). A scheme in which 2-loop and

higher terms in the β-function depend only on the Weyl tensor and thus vanish for AdSn or Sn case was

discussed also, e.g., in [36].
24The covariant local measure contribution cancels also power divergences [7].
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remain in the final answer.25 They are [7]

I[
√

2,
√

2, 2] =
K

(4π)2
, I[1, 1,

√
2] =

2K

(4π)2
, K ≡

∞
∑

k=0

(−1)k

(2k + 1)2
. (3.7)

In general, the contribution of bosonic graphs to the 2-loop effective action in a theory

with cubic and quartic vertices is

Γ2B =
4π√

λ

∫

d2σ
(

− 1

12
A3B +

1

8
A4B

)

, (3.8)

where A3B and A4B are, respectively the contributions of the graphs with topologies shown

in figure 1a and 1b. In the case of the bosonic AdS5×S5 sigma model computed according

to the regularization prescription described above they turn out to be

A3B = 12 (I[
√

2,
√

2] + 4 I[2, 2]) − 24 I[
√

2,
√

2, 2] , (3.9)

A4B = 8 (I[
√

2,
√

2] + 4 I[2, 2]) . (3.10)

Here I[
√

2,
√

2] and I[2, 2] are the ln2 Λ and ln Λ UV divergent integrals (3.5). Combining

them in (3.8) one finds that they cancel leaving us with a finite result proportional to the

Catalan’s constant (see (3.7))

Γ2B =
4π√

λ

2K

(4π)2
V2 . (3.11)

Similarly, the contribution of 2-loop graphs with fermion propagators in a theory with

fermion-fermion-boson and fermion-fermion-boson-boson couplings is in general

Γ2F =
4π√

λ

∫

d2σ

(

1

16
A3F +

1

8
A4F

)

, (3.12)

where A3F and A4F are produced, respectively, by graphs with topologies in figure 1c and

1d. The explicit calculation yields finite results

A3F = −32 I[1, 1,
√

2] , A4F = 0 , (3.13)

so that

Γ2F = − 4π√
λ

4K

(4π)2
V2 . (3.14)

As was already mentioned above, the cancellation of divergences in the sum of graphs with

fermion propagators represents a strong consistency test of the quantum GS action. The

absence of UV divergences separately in graphs in figures 1c and 1d potentially suggests the

existence of additional non-manifest symmetries in the fermionic action that are preserved

by the κ-symmetry gauge as well as by our regularization prescription.

25All possible combinations of masses occur at the intermediate steps. As in [7] the calculations were

done using Mathematica-based computer program.
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Combining the bosonic (3.11) and the fermionc (3.14) contributions, we finish with

Γ2 = Γ2B + Γ2F =
a2

2π
√

λ
V2 , (3.15)

a2 = a2B + a2F = K − 2K = −K . (3.16)

Similar results for the finite parts of Γ2B and Γ2F were found also in an independent

computation for a closely related S5 background in [7]. The overall sign of the result for

Γ2 was, however, opposite. This is consistent with the equivalence of the two AdS5 and S5

solutions since the analytic continuation relating them implies that one should also change

the sign of the string tension
√

λ → −
√

λ, i.e. to reverse the sign of all even-loop terms

in the effective action. Formally, this reverses the sign of the coefficient a2 in Γ2, leading

again to the result in (3.16).

3.3 Higher-loop contributions

Going to higher, e.g. 3-loop, order is in principle straightforward. We again expect that

all logarithmic divergences will cancel directly in d = 2 while power divergences can be

unambiguously separated and regularized away.

Based on the spectrum of fluctuations and the form of the propagators and vertices

in the string fluctuation action it is relatively straightforward to determine the general

structure of the finite higher loop contributions to the effective action and thus to the

strong-coupling expansion of cusp anomaly function in (1.1), (1.8) as predicted by the

string inverse tension expansion.

On dimensional grounds, the finite contribution to the effective action or cusp anomaly

comes from momentum integrals of mass dimension −2 (cf. (3.3), (3.4)). Most vertices in

the action (2.1) contain derivatives; employing partial fractioning and 2d Lorentz invari-

ance these derivatives may be used to cancel some of the propagators. Since many of

the fluctuation fields in the theory are massive, this leaves behind terms with uncanceled

propagators and with the momenta in the numerators replaced by the mass values. Thus,

the L-loop contribution to the effective action can be expressed in terms of scalar vacuum

integrals whose topology is that of the initial Feynman diagrams as well as that of the

“daughter” diagrams obtained by collapsing some of the propagators.

At each loop order there exists a new set of “maximally irreducible” topologies (see,

e.g., figures 1a and 1c at L = 2 and figures 2b, 2e,2g and 2h at L = 3). At L loops these

topologies contain at most (L + 1)-point vertices. All other topologies that can appear at

an L-loop order are inherited from lower loop orders by simply adjoining lower loop graphs

in such a way that the total number of loops is L (see figures 1b, 1d and figures 2a,2c, 2d,

and 2f).26

The number of irreducible sigma model diagrams grows factorially with L (there are

more graphs than, say in φ4 theory). A type of graph that potentially occurs at each

loop order is shown in figure 3. It may contain various combinations of propagators with

26Since the tadpole integral (3.6) is logarithmically divergent and assuming that the finiteness of the

partition function persists to all loop orders, such graphs will either not appear at all or they will involve

both the bosonic and the fermionic propagators in such a way that the sum of all of them is finite.
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Figure 3: L-loop “maximally irreducible” sunset-type graph

mass values (1,
√

2, 2) from the spectrum of our theory (massless propagators should not

appear at the end as all IR divergences should cancel out). On general grounds, most of

such integrals may contribute to the the effective action;27 explicit calculations are then

necessary to fix their coefficients. Some of these coefficients may, in fact, vanish, as was, for

example, the case with I[2, 2, 2] in the bosonic part (3.8) and with I[1, 1, 2] in the fermionic

part of the 2-loop result (see also [7]).

To examine which new transcendental numbers may possibly appear as coefficients in

Γ at the 3-loop order let us consider a generalization of the integral (3.4)

I[m1,m2,m3,m4] =

∫

d2q1d
2q2d

2q3d
3q4

(2π)8
δ(2)(q1 + q2 + q3 + q4)

(q2
1 + m2

1)(q
2
2 + m2

2)(q
2
3 + m2

3)(q
2
4 + m2

4)
, (3.17)

which corresponds to a graph of “maximally irreducible” topology shown in figure 3 with

L = 3 (i.e. to figure 2b). It is not easy to compute this integral for arbitrary values of

the masses mk. Using the values of mk that appear in our spectrum of fluctuations and

making a simplifying assumption that the four masses split into two equal pairs, we find:28

I[
√

2,
√

2,
√

2,
√

2] = 2I[2, 2, 2, 2] =
7 ζ(3)

2(4π)4
, (3.18)

I[
√

2, 2,
√

2, 2] =
1

2
I[1,

√
2, 1,

√
2] =

1

4
√

2(4π)4

[

ln(3 + 2
√

2) (ln 2)2

+4
√

2

[

Li2

(

1√
2

)

−Li2

(

− 1√
2

)]

+8

[

Li3

(

1√
2

)

−Li3

(

− 1√
2

)]]

,(3.19)

I[1, 2, 1, 2] =
1

(4π)4

[

ln 3 (ln 2)2

+2 ln 2

[

Li2

(

1

2

)

− Li2

(

− 1

2

)]

+ 2

[

Li3

(

1

2

)

− Li3

(

− 1

2

)]]

. (3.20)

As follows from (3.18), the ζ(3) coefficient makes a natural appearance at the 3-loop order

in the superstring sigma model partition function.29 It is therefore very likely that it will

27Some of them may be ruled out by taking into account the structure of possible vertices in the super-

string action (e.g., I [1, 1, 1] with 3 fermionic masses is obviously not allowed).
28The first integral here is related to the one found in [41]. It is interesting to note that integrals with

irrational mass ratios do not have definite transcendentality.
29As is well known, it also appears in the 4-loop sigma model β-function (computed in a mininimal

subtraction scheme) in the case of a generic target space metric [38, 39].
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be present in the expression for the 3-loop coefficient a3 in the cusp anomaly function. This

observation suggests a superstring (2d Feynman-diagrammatic) interpretation to the value

of the coefficient a3 in (1.4) found from the BES equation in [18].

Integrals for higher loop maximally irreducible graphs in figure 3 are harder to evaluate.

Their general expression written in 2d coordinate space is

I[m1,m2, . . . ,mL+1] =

∫

d2x
L+1
∏

i=1

[

1

2π
K0(mi|x|)

]

, (3.21)

where K0 is the Bessel function ( 1
2π

K0 is the 2d massive scalar propagator). It would

be interesting to relate their values30 to the constants appearing in the expressions for

higher-order aL coefficients found in [18]: the odd-loop coefficient should start with zeta

function ζ(L) and the even-loop one should start with the Dirichlet beta function β(L)

(cf. (1.3)–(1.6)).31 ,32

An underlying reason for this relation may be that the coordinate space representation

of the 2d diagrams is given by integrals of products of the Bessel function K0 and its

derivatives while the integrals of Bessel functions appear also in the BES equation [6] and

its strong-coupling solution in [18].

4. Concluding remarks

One consequence of the strong-coupling solution of the BES equation found in [18] was

that the coefficients a1, a2, . . . are all negative and grow factorially. The series in (1.1) is

then not Borel summable, i.e. its summation is ambiguous and this might be suggesting

adding to (1.1) exponentially small terms ∼ e−k
√

λ for some positive k.

By formally changing the sign of
√

λ
√

λ → −
√

λ (4.1)

one finds that (1.1) becomes a sign-alternating and thus Borel summable series. This is

puzzling since the weak-coupling expansion f(λ) = b1λ + b2λ
2 + . . . which is also described

by the BES equation (and which has finite radius of convergence) is formally invariant

under the sign change (4.1) and thus is “not aware” of the problem with summation of the

strong-coupling expansion.

The string theory interpretation of f(λ) as a coefficient in the partition function ex-

panded near a perturbatively stable string solution would also suggest a standard asymp-

totic but Borel-summable expansion in 1√
λ
. However, the string theory result for a2 in

30Such sunset diagram integrals in different dimensions were extensively discussed in the literature

(see [42] and references therein) and can be found numerically, but their analytic form is apparently not

known beyond few simple examples.
31By writing a generating function for the equal mass sunset diagrams F (t) =

R

d2x K0(|x|) e−tK0(|x|)

and approximating the Bessel function in the exponent as K0(|x|) ∼ − ln |x| one may see that at L loops

we expect a ζ(L)-type transcendentality. We thank A. Pivovarov for this comment.
32In this connection let us mention the following useful relations: β(n) = (−1)n

4n(n−1)!
[ψn−1(

1
4
) − ψn−1(

3
4
)],

β(2n) ∝ Li2n−1(
1
4
)− Li2n−1(

3
4
), β(2n − 1) ∝ π2n−1, where ψn−1(x) is the n-th derivative of ln Γ(x). They

express the Dirichlet beta function in terms of quantities that naturally appear in loop integrals.
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f(λ) found in [7] and here reproduces the negative sign of a2 in (1.3) and thus appears to

support the conclusion of [18] about the lack of Borel-summability of the strong coupling

expansion of f(λ).33

According to standard discussions of the appearance of similar asymptotic series in

QM and QFT problems this seems to suggest that the string background we are expanding

about is actually unstable, despite its apparent stability under small fluctuations of string

coordinates (all fluctuation modes in section 3 had non-negative values of squares of their

masses).34 The instability should manifest itself in the existence of complex energies but

it is not obvious what might be the origin of this instability,

Absence of Borel summability of perturbative expansions occurs in all quantum-mecha-

nical potential problems in which the expansion is done near a local (but not global)

minimum of the potential [44, 47].35 By analogy with such systems we may interpret this

apparent non-summability of the string α′ ∼ 1√
λ

perturbation theory as a signal that the

closed spinning string (or, equivalently, the null cusp solution) is only a local minimum of

the AdS5 × S5 superstring action. If this is indeed the correct interpretation, there should

be a tunneling solution connecting it to some “global vacuum” state.

It is interesting to note that the details of our 1-loop and 2-loop calculations (cf. (3.3),

(3.16)) suggest that the perturbation theory of the bosonic AdS5 × S5 sigma model leads

to a sign-alternating — and hence Borel-summable — series while the addition of the

fermionic contributions spoils this feature.36

A non-resummable perturbation theory expansion is ambiguous in the sense that either

the function being expanded has indeed a cut along the real axis in the coupling plane (in

which case the expansion is meaningless) or the singularity is cancelled by terms whose

derivatives vanish at the expansion point [45]. What happens in the present case, both

from the Bethe ansatz and the string theory points of view, remains to be clarified.

One generalization of the 2-loop superstring computation described in this paper is to

the case of null cusp solution with non-zero angular momentum J in S5. This in particular

33As was already mentioned above, the direct result of the computation in [7] was actually the opposite

sign for a2. However, this computation was done for a complex (but perturbatively stable) S5 solution

related to the scaling limit [30] of the spinning string solution in AdS5 by a formal complex automorphism

of the AdS5 × S5 string action which is an equivalence transformation provided one also inverts the sign of

the string tension, i.e. of
√

λ. This effectively inverts the sign of a2.
34The standard argument [43] based on e2 → −e2 continuation that makes perturbative vacuum unstable

implies that the complex coupling constant space exhibits a cut on the negative real axis and consequently

the expansion in small e near a perturbatively stable vacuum should lead to an asymptotic sign-alternating

and thus Borel summable series. In the case when the coefficients in the series are not sign-alternating,

the Borel transformed series no longer converges, i.e. the perturbation series is not Borel-summable. From

the standpoint of the argument of [43] this case appears to correspond to developing perturbation theory

around an unstable vacuum state.
35In QFT context, ref. [46] argued that the large order behavior of coefficients of perturbation theory

around a stable vacuum state may be explained by the existence of a classical euclidean solution of the

effective action appearing at each order of perturbative expansion (a complex instanton). In [45] it was

argued that the lack of Borel summability of perturbation theory near an unstable vacuum may be related

to the existence of a “real instanton” of the original action.
36This might be an indication that the “global vacuum” may involve some nontrivial classical profiles for

the fermionic fields.
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may allow one to verify the suggestion [26] that certain terms in the corresponding anoma-

lous dimension found in the limit when J√
λ ln S

≪ 1 are determined only by the bosonic

S5 contributions. The relevant solution with non-zero J is (cf. (2.8), (2.9), [25]; see also

footnote 15 above)

z̄ =
√

2e−κ σ0+σ1 , ϕ = ν ′ σ0 , κ =
√

1 − ν ′2 ,

x̄0 = e−κ σ0+σ1 cosh(σ1 + κσ0) , x̄1 = e−κ σ0+σ1 sinh(σ1 + κσ0) . (4.2)

Here ϕ is an angle of S5 and ν ′ = iν, where J =
√

λν is the angular momentum of the

corresponding spinning string background with Minkowski world sheet. A technical com-

plication is that, unlike the case of ν ′ = 0 discussed above, the denominator of the bosonic

propagator no longer has a Lorentz-covariant form. Consequently, the direct calculation

of momentum integrals becomes quite cumbersome. Moreover, the existence of fluctuation

fields of mass proportional to ν ′ requires that their contribution is treated exactly. We

leave this problem for the future.
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A. Details of fluctuation Lagrangian

The relation between the Poincare coordinate fields z, xm and the fluctuation fields in (2.10)

is as follows (ǫ is a formal expansion parameter that should be set to 1 at the end)

z =
e−

√
2 n1·σ−ǫϕ2

sin(π
4 + ǫφ))

√

1 + ǫ2(ξ2 + η2)
,

x0 = e−
√

2 n1·σ−ǫϕ2 cosh(
√

2 n2 · σ − ǫϕ1) cot

(

π

4
+ ǫφ

)

,

x1 = −e−
√

2 n1·σ−ǫϕ2 sinh(
√

2 n2 · σ − ǫϕ1) cot

(

π

4
+ ǫφ

)

x2 =
ǫ e−

√
2 n1·σ−ǫϕ2 η

sin(π
4 + ǫφ)

√

1 + ǫ2(ξ2 + η2)
,

x3 =
ǫ e−

√
2 n1·σ−ǫϕ2 ξ

sin(π
4 + ǫφ)

√

1 + ǫ2(ξ2 + η2)
. (A.1)
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The expansion of the matrix (2.20), (2.16) that enters the action (2.21) has the form

Nab =ηab+ǫ

(

2φ + ϕ2 − 1√
2
(n1 · ∂φ + n1 · ∂ϕ2) ϕ1 − 1√

2
n1 · ∂ϕ1

−ϕ1 −
√

2n2 · ∂φ − 1√
2
n2 · ∂ϕ2 −2φ − ϕ2 − 1√

2
n2 · ∂ϕ1

)

ab

+ O(ǫ2). (A.2)

The bosonic propagator corresponding to the quadratic part of the Lagrangian (2.10) is

K−1
B (q) =

























−1
2(q2+4)

i
√

2 n2·q
q2 (q2+4)

i
√

2 n1·q
q2 (q2+4)

0 0 0
−i

√
2 n2·q

q2 (q2+4)
(q2)2+4(n1·q)2

(q2)2(q2+4)
−4n1·q n2·q
(q2)2(q2+4) 0 0 0

−i
√

2 n1·q
q2 (q2+4)

−4n1·q n2·q
(q2)2(q2+4)

(q2)2+4(n2·q)2
(q2)2(q2+4)

0 0 0

0 0 0 1
2(q2+2)

0 0

0 0 0 0 1
2(q2+2)

0 0 0 0 0 1
2 q2 1l5

























(A.3)

The fermionic propagator corresponding to (2.22) is

K−1
F =

ΓL

q2 + 1

[

in1 × q(Γ0 −
√

2Γ9) − in2 × qΓ1 + n1 × n2Γ
019

]

C−1 , (A.4)

where n × q = ǫabnaqb, ΓL = 1
2 (1 + Γ11) is the left-handed chiral projector and C = Γ0 is

the charge conjugation matrix (for notation see also [7]).
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